Intrachain reactions of supercoiled DNA simulated by Brownian dynamics.
نویسندگان
چکیده
We considered an irreversible biochemical intrachain reaction of supercoiled DNA as a random event that occurs, with certain probability, at the instant of collision between two reactive groups bound to distant DNA sites. Using the Brownian dynamics technique, we modeled this process for a supercoiled DNA molecule of 2.5 kb length in dilute aqueous solution at an NaCl concentration of 0.1 M. We calculated the mean reaction time tau(Sigma) as a function of the intrinsic second-order rate constant k(I), the reaction radius R, and the contour separation S of the reactive groups. At the diffusion-controlled limit (k(I) --> infinity), the kinetics of reaction are determined by the mean time tau(F) of the first collision. The dependence of tau(F) on R is close to inversely proportional, implying that the main contribution to the productive collisions is made by bending of the superhelix axis. At sufficiently small k(I), the mean reaction time can be satisfactory approximated by tau(Sigma) = tau(F)(app) + 1/(k(I)c(L)), where c(L) is the local concentration of one reactive group around the other, and tau is an adjustable parameter, which we called the apparent time of the first collision. The value of tau depends on R very weakly and is approximately equal to the mean time of the first collision caused by mutual reptation of two DNA strands forming the superhelix. The quasi-one-dimensional reptation process provides the majority of productive collisions at small k(I) values.
منابع مشابه
Internal motion of supercoiled DNA: brownian dynamics simulations of site juxtaposition.
Thermal motions in supercoiled DNA are studied by Brownian dynamics (BD) simulations with a focus on the site juxtaposition process. It had been shown in the last decade that the BD approach is capable of describing actual times of large-scale DNA motion. The bead model of DNA used here accounts for bending and torsional elasticity as well as the electrostatic repulsion among DNA segments. The ...
متن کاملBrownian dynamics simulation of DNA condensation.
DNA condensation observed in vitro with the addition of polyvalent counterions is due to intermolecular attractive forces. We introduce a quantitative model of these forces in a Brownian dynamics simulation in addition to a standard mean-field Poisson-Boltzmann repulsion. The comparison of a theoretical value of the effective diameter calculated from the second virial coefficient in cylindrical...
متن کاملDynamics of site juxtaposition in supercoiled DNA.
Juxtaposition kinetics between specific sites in supercoiled DNA is investigated at close to physiological ionic conditions by Brownian dynamics simulations. At such conditions, supercoiled DNA is interwound, and the probability of spatial site juxtaposition is much higher than in relaxed DNA. We find, however, that supercoiling does not correspondingly increase the rate of juxtaposition at the...
متن کاملDynamics and consequences of DNA looping by the FokI restriction endonuclease
Genetic events often require proteins to be activated by interacting with two DNA sites, trapping the intervening DNA in a loop. While much is known about looping equilibria, only a few studies have examined DNA-looping dynamics experimentally. The restriction enzymes that cut DNA after interacting with two recognition sites, such as FokI, can be used to exemplify looping reactions. The reactio...
متن کاملInertial stochastic dynamics. II. Influence of inertia on slow kinetic processes of supercoiled DNA
We apply our new algorithms presented in the companion paper ~LTID: long-time-step inertial dynamics, IBD: inertial Brownian dynamics! for mass-dependent Langevin dynamics ~LD! with hydrodynamics, as well as the standard Brownian dynamical ~BD! propagator, to study the thermal fluctuations of supercoiled DNA minicircles. Our DNA model accounts for twisting, bending, and salt-screened electrosta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 81 4 شماره
صفحات -
تاریخ انتشار 2001